1(a)	-5 -13	B2	condone -13 -5 B1 -5 as first term
			or
			ft their first term – 8

	Alternative method 1				
	21 – 17 or 17 – 21 or 17 + 4 or 21 – 4 or (difference is) 4 or (7th term =) 21 + 4 or 25 or (4th term =) 17 – 4 or 13	M1	may be seen as 17 21 4 allow (difference is) –4		
2	17 + (100 - 5) × 4 or 17 + 95 × 4 or 17 + 380 or 21 + (100 - 6) × 4 or 21 + 94 × 4 or 21 + 376 or 17 - 4 × 4 + 99 × 4	M1dep	must be using 4 oe calculation that would evaluate to 397 5th term + 95 × 4 6th term + 94 × 4 1st term + 99 × 4		
	or 1 + 99 × 4 or 1 + 396 or 17 - 5 × 4 + 100 × 4 or -3 + 100 × 4 or -3 + 400	A1	0th term + 100 × 4		
	Alternative method 2	7(1			
	4n	M1	oe eg n × 4		
	4n - 3	A1	0e		
	397	A1			

	Additional Guidance				
	Term to term rule described eg Add on 4 each time	M1			
	a + 5d = 21, $a + 4d = 17$ only	MO			
	Difference shown as 4 then eg $n + 4$	M1			
	Only eg n + 4 or 3n + 4	M0			
	4n − 3 seen even if not subsequently used	M1A1			
2 cont	4n seen eg $4n + 13$ even if not subsequently used	M1			
	Correct list going up in 4s stopping at 397	M1M1A1			
	List going up in 4s with an error or not reaching 397	M1M0A0			
	No subtraction seen and incorrect difference eg 17 21 +3	МО			
	Alt 2 allow n4	M1			
	4 <i>n</i> – 3 = 100	M1A1A0			
	Allow M1 even if not subsequently used				

Q	Answer	Mark	Commer	nts
3	$\frac{2n}{3n+1}$	В3	oe eg $\frac{2n}{2n+(n+1)}$ B2 any two correct n th to $2n$ or $n+1$ or $3n+1$ B1 any one correct n th $2n$ or $n+1$ or $3n+1$	+ 1 term from
	Additional Guidance			
	May be seen in a fraction or added eg $2n + (n + 1)$			B2
	Do not accept $2n$ embedded in an incorrect expression eg $2n-2$			B0

Q	Answer	Mark	Comment
4(a)	x^2y^3	B1	
Q	Answer	Mark	Comment
4(b)	Could be either in top row	B1	
4(0)	Must be negative in bottom row	B1	

	(8th term =) 2 ⁸ or 256	M1	oe may be implied		
	Common difference of A indicated as 3	M1	may be implied eg $3n \dots$ or $\dots + 3(n-1)$		
	3n + 10 = their 256 or (their 256 – 10) \div 3 or (their 256 – 13) \div 3 or 81	M1dep	oe equation eg 13 + 3(n - 1) dep on 2nd M1 their 256 may be any numbe be in index form	,	
	82	A1			
	Ado	ditional G	uidance		
	n + 3 implies 2nd M1				
5	Do not award M1 for 256 if it is in a list or it is the highest power evaluated				
	Common difference of 3 may be show				
	10, (13, 16, 19, 22), 25 without co- imply 2nd M1				
	82 from trial and improvement				
	Embedded answer $3 \times 82 + 10 = 25$	M3A0			
	$3n + 10 = 256$ or $3n + 10 = 2^8$ or 3	M1M1M1			
	3n - 10 = 256			M1M1M0	
	$3n + 10 = 16 (2^8 \text{ not seen})$	M0M1M1			
	$3n + 6 = 2^8$				
	$256 - 22 = 234$, $234 \div 3$ (indicating of	M1M1M0			
	3n - 8 = 128 (28 not seen)			M0M1M0	

Q	Answer	Mark	Comments		
	28	B1			
6	Additional Guidance				

Q	Answer	Mark	Comment
7	1225	B1	

Q	Answer	Mark	Comment	
	Alternative method 1 Works out nth term of new sequence			
	Common difference of 5 identified	M1	implied by 5n	
	5n + 3	A1	oe eg 8 + 5(n - 1)	
	their $(5n + 3) - (n + 1)$	M1	oe their $(5n + 3)$ must be a linear expression condone missing brackets	
	4n + 2	A1ft	oe eg $6 + 4(n - 1)$ ft their $5n + 3$ which must be a linear expression missing brackets must be recovered	
8	Alternative method 2 Works out terms of sequence A and sequence B			
	2, 3, 4	M1	sequence A	
	6, 10, 14	A1	sequence B	
	Common difference of 4 identified	M1	ft their 6, 10, 14 which must be a linear sequence for B	
	4n + 2		oe eg 6 + 4(n - 1)	
		A1ft	ft their 6, 10, 14 which must be a linear sequence for B	
	Additional Guidance			
	Choose the scheme that favours the student			

Q	Answer	Mark	Commen	its	
	Alternative method 1				
	20		B2 53 or 33 + 20 or 7	⁷ 3 – 20	
		B3	or $\frac{73-33}{2}$ or $\frac{40}{2}$		
			B1 73 – 33 or 40		
	Alternative method 2				
	33 + x or $73 - x$	M1	oe		
9(a)	x + 33 + x = 73		oe eg $33 + x = 73 - x$		
	or				
	2x + 33 = 73	M1dep			
	or				
	$\frac{73-33}{2}$ or $\frac{40}{2}$				
	20	A1			
	Additional Guidance				
	33 + x = 73			M1	

Q	Answer	Mark	Commer	nts
	No and gives valid reason	B1	eg No and the first ten or No and $1-1^2=0$	m is zero
			or No and all the terms ar except the first	e negative
	Add	ditional G	Guidance	
	Ignore incorrect or irrelevant stateme	nts alongs	side correct statements	
	Ignore all other statements and evalu	ations if 1	- 1 ² = 0 seen	
	Ticks Yes			В0
	No and 0, -2, -6,			B1
	No and $1 - 1^2 = 0$ with $2 - 1^2 = 1$			B1
	No and $1 = 1^2$	B1		
9(b)	No and $1-1=0$ (0 is positive) (condone)			B1
	No and n^2 can be equal to n and 1^2	B1		
	No and n^2 can be equal to n			В0
	No and n could equal 1 which cannot	ot become	bigger when squared	B1
	No and if you put $n = 1$ it's not negative	tive		B1
	No and $n=1$ and $n^2=1$			B1
	No, all the terms are negative except	when n =	:1	B1
	No and if $n = 1$ it creates 0		B1	
	No, not when $n = 1$			В0
	No, it doesn't work for the first term			В0
	No and $0.5 - 0.5^2 = 0.25$			В0
	No and when $n = 0$ it won't be negative			В0

Q	Answer	Mark	Comments	
10(a)	Add	B1 ditional G	Guidance	
	Mark intention, condone missing interior	or lines		
	Shading not required			
Q	Answer Mark Comments			
10(b)	23	B1		